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Thermal Behavior of a Multi-layered Thin Slab
Carrying Periodic Signals under the Effect of the
Dual-Phase-Lag Heat Conduction Model

M. A. Al-Nimr,1,2 M. Naji,1 and R. I. Abdallah1

Received October 16, 2003

The thermal behavior of a two-layered thin slab carrying periodic signals
under the effect of the dual-phase-lag heat conduction model is investi-
gated. Two types of periodic signals are considered, a periodic heating source
and a periodic imposed temperature at the boundary. The deviations among
the predictions of the classical diffusion model, the wave mode, and the
dual-phase-lag model are investigated. Analytical closed-form solutions are
obtained for the temperature distribution within the slab. The effect of the
angular frequency, thickness of the plate, dimensionless thermal relaxation
time, dimensionless phase-lag in temperature gradient, thermal conductivity,
and thermal diffusivity on the temperature distribution of the slab was stud-
ied. It is found that the deviations among the three models increase as the
frequency of the signals increases and as the thickness of the plate decreases.
It is found that the use of the dual-phase-lag heat conduction model is nec-
essary when the metal film thickness is of order 10−6 m and the angular
frequency of the signals is of order 1012rad · s−1.

KEY WORDS: composite slab; dual-phase-lag model; hyperbolic heat con-
duction model; non-Fourier heat conduction model; periodic heating source.

1. INTRODUCTION

For situations involving very low temperature near absolute zero, a heat
source such as a laser or microwave of extremely short duration or with
a very high frequency, and very high temperature gradient, heat is found
to propagate at a finite speed. To account for the phenomena involving
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the finite propagation speed of the thermal wave, the classical Fourier heat
flux model should be modified. Cattaneo [1] and Vernotte [2] suggested
independently a modified heat flux model in the form of

q(t + τ̄ , r)=−k∇T (t, r) (1)

The constitutive law of Eq. (1) assumes that the heat vector (the effect)
and the temperature gradient (the cause) across a material volume occur
at different instants of time, and the time delay between the heat flux and
the temperature gradient is the relaxation time τ . The first-order expan-
sion of q in Eq. (1) with respect to t bridges all the physical quantities at
the same time. It results in the expansion,

q(t, r)+ τ̄
∂q
∂t

(t, r)=−k∇T (t, r) (2)

In Eq. (2) it is assumed that τ is small enough so that the first-order
Taylor expansion of q(t + τ , r) is an accurate representation for the con-
duction heat flux vector. The equation of energy conservation for such a
problem is given as

ρc
∂T

∂t
=−∇ ·q +g (3)

Elimination of q between Eqs. (2) and (3) leads to the classical hyperbolic
heat conduction equation,

1
α

∂T

∂t
+ τ̄

α

∂2T

∂t2
=−∇2T + g

k
+ τ̄

k

∂g

∂t
(4)

To remove the temperature gradient driving force (lead) assumption made
in the thermal wave model, as proposed in Eq. (1), the-dual phase-lag
model is proposed [3–5]. The dual-phase-lag model allows either the tem-
perature gradient (cause) to drive the heat flux vector (effect) or the heat
flux vector (cause) to drive the temperature gradient (effect) in the tran-
sient process. Mathematically, this can be represented by [3–5]

q(t + τ̄q , r)=−k∇T (t + τ̄t , r) (5)

For the case of τT > τq , the temperature gradient established across a
material volume is a result of the heat flow, implying that the heat flux
vector is the cause and the temperature gradient is the effect. For τT <

τq , on the other hand, heat flow is induced by the temperature gradient
established at an earlier time, implying that the temperature gradient is the
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cause, while the heat flux vector is the effect. The first-order approxima-
tion of Eq. (5) yields

q(t, r)+ τ̄q

∂q

∂t
(t, r)=−k

[
�T (t, r)+ τ̄t

∂

∂t
[�T (t, r)]

]
(6)

Elimination of q between Eqs. (3) and (6) leads to the heat conduction
equation under the dual-phase-lag effect:

1
α

∂T

∂t
(t, r)+ τ̄q

α

∂2T

∂t2
(t, r) = ∇2T (t, r)+ τ̄T

∂

∂t

[
∇2T (t, r)

]
+1

k

[
g + τ̄q

∂g

∂t
(t, r)

]
(7)

In the absence of the temperature gradient phase-lag (τT = 0), Eq. (7)
reduces to the classical hyperbolic heat conduction as described by Eq. (4),
also, in the absence of two phase-lags (τT =τq =0), Eq. (7) reduces to the
classical diffusion equation employing Fourier’s law.

Deviations between the predictions of the classical Fourier model and
the dual-phase-lag model appear in applications involving a very fast heat-
ing rate and very thin layers; also, the deviation becomes significant in
situations involving high frequency imposed thermal pulses.

Examples of a heating source having high frequencies are the laser
and microwave heating sources. As an example, laser heating has become
an active research area beginning with the employment of short pulse
lasers in the fabrication of microstructures, laser patterning, laser process-
ing of diamond films from carbon ion, implanted copper substrates, and
laser surface heating.

On the other hand, multi-layer metal thin films are widely used in
engineering applications since a single metal layer often cannot satisfy all
mechanical, thermal, and electrical requirements. A better understanding
of energy transfer in such multi-layer systems is critical in many appli-
cations. For example, high-power infrared-laser systems often use gold-
coated metal mirrors because of their extremely high reflectivity, typically
over 97%. Even with such high reflectivity, a small but significant portion
of laser energy is still absorbed in the coating, which can cause excessive
heating and thermal damage to the mirrors [6].

In the literature, numerous studies have been carried out to investi-
gate the deviations between the predictions of the classical Fourier model
and the dual-phase-lag model for different situations and under different
operating conditions [7–17]. To the authors’ best knowledge, the thermal
behavior of a multi-layered thin slab carrying high-frequency periodic ther-
mal signals under the effect of the dual-phase-lag heat conduction model
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has not yet been investigated. The deviations between the predictions of
the dual-phase-lag model and the classical Fourier law will be studied
under different operating conditions and for two cases. Also, the effect of
different thermal properties on the thermal behavior of the slab will be
investigated. In the first case, the thermal harmonic behavior is a result of
a fluctuating heating source; and in the second case, the thermal harmonic
behavior is a result of a fluctuating imposed temperature at the boundary.

2. MATHEMATICAL FORMULATION

2.1. Case 1: Periodic Heating Source

Referring to Fig. 1, the following equations are applied for the two
layers. It is assumed that there is a periodic heating source in the first layer
and there is no volumetric heating source in the second layer. The sub-
scripts 1 and 2 refer to the first and second layers, respectively.

1
α1

∂T1

∂t
(t, r)+ τ̄q1

α1

∂2T1

∂t2
(t, r) = ∇2T1(t, r)+ τ̄T 1

∂

∂t

[
∇2T1(t, r)

]
+ 1

k1

[
g1 + τ̄q1

∂g1

∂t
(t, r)

]
(8)

1
α2

∂T2

∂t
(t, r)+ τ̄q2

α2

∂2T2

∂t2
(t, r)=∇2T2(t, r)+ τ̄T 2

∂

∂t

[
∇2T2(t, r)

]
(9)

where

g1 =g0 sin(wt) (10)

Fig. 1. Schematic diagram showing the problem geometry.
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To generalize the results, the following non-dimensional variables are
introduced:

η= α1t

L2
1

, ξ = x

L1
, τq = α1τ̄q

L2
1

, τT = α1τ̄T

L2
1

,

θ = T −T∞
T∞

, G1 = g1L
2
1

k1T∞
, Q= qL1

k1T∞
(11)

Hence, the governing equations in dimensionless form are given as

∂θ1

∂η
+ τq1

∂2θ1

∂η2
= ∂2θ1

∂ξ2
+ τT 1

∂3θ1

∂η∂ξ2
+G1 + τq1

∂G1

∂η
(12)

∂θ2

∂η
+ τq2

∂2θ2

∂η2
= αR

∂2θ2

∂ξ2
+αRτ 2

T

∂3θ2

∂η∂ξ2
(13)

where
αR = α2

α1
G1 =G0 sin(wη)=G0Im{eiwη}

G0 = g0L
2
1

k1T∞
w = wL2

1

α1
(14)

2.1.1. Boundary Conditions for Case 1

The two faces of the composite slab are insulated. At the interface
between the two materials, we assume that there is no heat loss, i.e., the
two materials are in perfect thermal contact. Therefore, their boundary
conditions can be formulated as follows:
Boundary conditions:
At x =0

∂T1

∂x
(t,0)=0 (15)

At x L1 +L2

∂T2

∂x
(t,L1 +L2)=0 (16)

At x L1 (at the contact point)

T1(t,L1) = T2(t,L1) (17)

q1(t,L1) = q2(t,L1) (18)

By applying the dimensionless variables in Eq. (11) to the boundary
conditions, Eqs. (15)–(18), we get the following dimensionless boundary
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conditions:
At ξ =0

∂θ1

∂ξ
(η,0)=0 (19)

At ξ =R

∂θ2

∂ξ
(η,R)=0 (20)

At ξ =1.0 (at the contact point)

θ1(η,1) = θ2(η,1) (21)

Q1(η,1) = Q2(η,1) (22)

where R = (L1 +L2)/L1.
Taking L1 =L2 and R = 2, Eqs. (12) and (13) assume the solution in the
form:

θ1(η, ξ) = Im{W1(ξ)eiwη} (23)

θ2(η, ξ) = Im{W2(ξ)eiwη} (24)

where Im denotes “the imaginary part of” and i is the complex number√−1. As a result, Eqs. (12) and (13) are reduced to

∂W1

∂ξ2
− τ 2

1 W1 = AA (25)

∂W2

∂ξ2
− τ 2

2 W2 = 0 (26)

where the constants

τ1 =
√

iw − τq1w
2

1+ iwτT 1

τ2 =
√

iw − τq2w
2

αR +αRiwτT 2

AA = −(G0 + iwτq1G0)

(1+ iwτT 1)
(27)

Equations (25) and (26) can be solved analytically as follows:

W1 = C1eτ1ξ +C2e−τ1ξ − AA

τ 2
1

(28)
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W2 = C3eτ2ξ +C4e−τ2ξ (29)

The boundary conditions Eqs. (19)–(22) are transformed as follows: At ξ =
0

∂W1

∂ξ
(0)=0 (30)

At ξ =R

∂W2

∂ξ
(R)=0 (31)

At ξ =1 (at the contact point)

W1(1) = W2(1) (32)
∂W1

∂ξ
(1) = KR

∂W2

∂ξ
(1) (33)

where

KR = kR

(1+ iwτq1)

(1+ iwτq2)

(1+ iwτT 2)

(1+ iwτT 1)

kR = k2

k1
(34)

After applying the boundary conditions in Eqs. (30)–(33), the constants
(C1, C2, C3, and C4) in Eqs. (28) and (29) can be determined:

C1 = C2 (35)

C3 = BBC4 (36)

C2 = DDC4 (37)

C4 = 1
(DDeτ1 +DDe−τ1 −BBeτ2 − e−τ2)

AA

τ 2
1

(38)

where

BB = e−2τ2R

DD = KR
(τ2BBeτ2 − τ2e

−τ2)

(τ1e
τ1 − τ1e

−τ1)
(39)

Finally, the analytical solution for Eqs. (23) and (24) can be evaluated by
using computer programs in “MATLAB”.
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2.2. Case 2: Periodic Imposed Temperature

Referring to Fig. 1, the following equations are applied for the two
layers. It is assumed that there is no volumetric heating source in the two
layers. The subscripts 1 and 2 refer to the first and second layers, respec-
tively.

1
α1

∂T1

∂t
(t, r)+ τ̄q1

α1

∂2T1

∂t2
(t, r) = ∇2T1(t, r)+ τ̄T 1

∂

∂t

[
∇2T1(t, r)

]
(40)

1
α2

∂T2

∂t
(t, r)+ τ̄q2

α2

∂2T2

∂t2
(t, r) = ∇2T2(t, r)+ τ̄T 2

∂

∂t

[
∇2T2(t, r)

]
(41)

To generalize the results, the following non-dimensional variables are
introduced:

η= α1t

L2
1

, ξ = x′

L1
, τq = α1τ̄q

L2
1

, τT = α1τ̄T

L2
1

, θ = T

T∞
, Q= qL1

k1T∞
(42)

Hence, the governing equations in dimensionless form are given as

∂θ1

∂η
+ τq1

∂2θ1

∂η2
= ∂2θ1

∂ξ2
+ τT 1

∂3θ1

∂η∂ξ2
(43)

∂θ2

∂η
+ τq2

∂2θ2

∂η2
= αR

∂2θ2

∂ξ2
+αRτT 2

∂3θ2

∂η∂ξ2
(44)

where

αR = α2

α1

2.2.1. Boundary Conditions for Case 2

One face of the composite slab is insulated while the other face was
imposed with a fluctuating temperature. At the interface between the two
materials, we assume that there is no heat loss, i.e., the two materials are
in perfect thermal contact.

Therefore, their boundary conditions can be summarized as follows:
Boundary conditions:
At x =0

T1(t,0)=T0 sin(wt) (45)

At x =L1 +L2

∂T2

∂x
(t,L1 +L2)=0 (46)



Thermal Behavior of a Multi-layered Thin Slab with Periodic Signals 957

Fig. 2. Effect of angular frequency on the transient temperature distribution at ξ = 0.5
under the effect of a periodic heating source; τq1 = 0.4348 τq2 = 0.7438, τT 1 = 70.833, τT 2 =
89.286, αR =1.47, kR =1.085, ω=1.0, G0 =10.0.

At x =L1 (at the contact point)

T1(t,L1) = T2(t,L1) (47)

q1(t,L1) = q2(t,L1) (48)

By applying the dimensionless variables, Eq. (42), to the boundary con-
ditions, Eqs. (45)–(48), we get the following dimensionless boundary
conditions:
At ξ =0

θ1(η,0)= θ0 sin(wη)= θ0{Imeiwη} (49)

At ξ =R

∂θ2

∂ξ
(η,R)=0 (50)
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Fig. 3. Effect of angular frequency on the spatial temperature distribution at η = 1.5 under
the effect of a periodic heating source; τq1 = 0.4348, τq2 = 0.7438, τT 1 = 70.833, τT 2 = 89.286,
αR =1.47, kR =1.085, ω=1.0, G0 =10.0.

At ξ =1 (at the contact point)

θ1(η,1) = θ2(η,1) (51)

Q1(η,1) = Q2(η,1) (52)

where

R = L1 +L2

L1
, θ0 = T0

T∞
, w = wL2

1

α1
(53)

Taking L1 =L2 and R =2,
Equations (43) and (44) assume a solution in the form,

θ1(η, ξ) = Im{W1(ξ)eiwη} (54)

θ2(η, ξ) = Im{W2(ξ)eiwη} (55)

As a result, Eqs. (43) and (44) are reduced to

∂W1

∂ξ2
− τ 2

1 W1 = 0 (56)
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Fig. 4. Effect of angular frequency on the transient temperature distribution at ξ = 0.5
under the effect of a periodic heating source; τq1 = 0.4348, τq2 = 0.7438, τT 1 = 70.833, τT 2 =
89.286, αR =1.47, kR =1.085, ω=0.1, G0 =10.0.

∂W2

∂ξ2
− τ 2

2 W2 = 0 (57)

where the constants are as defined in Eq. (27)
Equations (56) and (57) can be solved analytically as follows:

W1 = C1eτ1ξ +C2e−τ1ξ (58)

W2 = C3eτ2ξ +C4e−τ2ξ (59)

The boundary conditions, Eqs. (49)–(52), are transformed as follows:
At ξ =0

W1(0)=0 (60)

At ξ =R

∂W2

∂ξ
(R)=0 (61)
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Fig. 5. Effect of angular frequency on the spatial temperature distribution at η=20.0 under
the effect of a periodic heating source; τq1 = 0.4348, τq2 = 0.7438, τT 1 = 70.833, τT 2 = 89.286,
αR =1.47, kR =1.085, ω=0.1, G0 =10.0.

At ξ =1 (at the contact point)

W1(1) = W2(1) (62)
∂W1

∂ξ
(1) = KR

∂W2

∂ξ
(1) (63)

where KR is as defined in Eq. (34).
After applying the boundary conditions in Eqs. (60)–(63), the con-

stants (C1, C2, C3, and C4) in Eqs. (58) and (59) can be determined:

C1 = θ0 −C2 (64)

C3 = BBC4 (65)

C2 = DDC4 +EE (66)

C4 = (θ0 −EE)eτ1 +EEe−τ1

(BBeτ2 + e−τ2 +DDeτ1 −DDe−τ1)
(67)
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Fig. 6. Effect of angular frequency on the transient temperature distribution at ξ = 1.5
under the effect of a periodic imposed temperature; τq1 = 0.4348, τq2 = 0.7438, τT 1 = 70.833,
τT 2 =89.286, αR =1.47, kR =1.085, ω=1.0, θ0 =10.0.

where

BB = e−2τ2R, DD =KR
(τ2e−τ2 − τ2BBeτ2)

(τ1eτ1 + τ1e
−τ1)

, EE = τ1θ0eτ1

(τ1eτ1 + τ1e−τ1)
(68)

Finally, the analytical solution for Eqs. (54) and (55) can be evaluated by
using computer programs in “MATLAB.”

3. RESULTS AND DISCUSSION

Figures 2–7 show the effect of the angular frequency ω on the tran-
sient and spatial temperature distribution of the slab under the effect of
the periodic heating source and periodic imposed temperature. It is clear
from these figures that the deviations among the predictions of the three
models increase as ω increases. An increase in ω will increase the effect
of the time delay between the heat flux and the temperature gradient, and
the deviations among the three models will increase. This implies that the
classical diffusion model gives accurate predictions for the plate thermal
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Fig. 7. Effect of angular frequency on the transient temperature distribution at ξ = 1.5
under the effect of a periodic imposed temperature; τq1 = 0.4348, τq2 = 0.7438, τT 1 = 70.833,
τT 2 =89.286, αR =1.47, kR =1.085, ω=0.1, θ0 =10.0.

behavior when ω is very small. On the other hand, the use of the dual-
phase-lag model or wave model becomes a necessity when ω increases.
In addition, it is clear from these figures that the deviations between
the predictions of the wave model and the diffusion model are smaller
than the deviations between the dual-phase-lag model and the diffusion
model. Also, it is noticed that the deviations among the predictions of
the three models become significant when ω > 1.0. This corresponds to

 >

α1
L2

1
. Most metal films have α of order 10−4 m2 · s−1 and L1 = 10−8.

This implies that the use of the dual-phase-lag model becomes a neces-
sity when the frequency of the heating source is larger than 1012 s−1. Fig-
ures 2, 6, 8, and 9 show the temperature distribution for the three mod-
els for different values of dimensionless phase lag in temperature gradi-
ent and heat flux. The figures show that the deviations among the pre-
dictions of the three models increase as the dimensionless phase lag in
the temperature gradient and heat flux increases. And it is significant for
τq1>2.718×10−4. This corresponds to L2

1 <
τq1 ×α1

2.718×10−4 . For most metals,
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Fig. 8. Deviations in temperature distribution between the three models at ξ =0.5 under the
effect of a periodic heating source; τq1 =2.718×10−4, τq2 =4.649×10−4, τT 1 =0.0443, τ{T2} =
0.0558, αR =1.47, kR =1.085, ω=1.0, G0 =10.0.

α is of order 10−4 m2 · s−1, τq is of order 10−12 s, and τT is of order
10−10 s. As a result, the use of the dual-phase-lag model is necessary when
the metal film thickness is of order 10−6 m.

4. CONCLUSION

The thermal behavior of a two-layered thin slab under the effect of
periodic heating signals is investigated using three different heat conduc-
tion models: diffusion, wave, and dual-phase-lag heat conduction mod-
els. The periodic thermal behavior is a result of a periodic heating source
or a periodic imposed temperature at the boundary. It is found that the
deviations among the three models increase as the frequency of the sig-
nals increases and as the dimensionless thickness of the slab decreases.
Also, it is found that the deviations increase as the dimensionless phase
lag in temperature gradient and heat flux increase. It is found that the
use of the dual-phase-lag model is necessary when the metal film thickness
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Fig. 9. Deviations in temperature distribution between the three models at ξ =1.5 under the
effect of a periodic imposed temperature; τq1 =2.718×10−4, τq2 =4.649×10−4, τT 1 =0.0443,
τT 2 =0.0558, αR =1.47, kR =1.085, ω=1.0, θ0 =10.0.

is of order 10−6 m and the angular frequency of the signals is of order
1012 rad · s−1. It is found that the temperature distribution within the slab
increases as the thermal conductivity ratio (k2/k1) decreases and the ther-
mal diffusivity ratio (α2/α1) increases. Analytical closed-form solutions are
obtained for the temperature distribution within the slab.

NOMENCLATURE

c Specific heat capacity (J · kg−1 · K−1)
g Heating source per unit volume (W · m−3)
g0 Amplitude of the heating source (W · m−3)

G Dimensionless heating source,
gL2

1
k1T∞

G0 Amplitude of the dimensionless heating source,
g0L

2
1

k1T∞
L1 Thickness of the first plate, m
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L2 Thickness of the second plate, m
k Thermal conductivity (W · m−1 · K−1)
kR Thermal conductivity ratio k2/k1
q Conduction heat flux, (W · m−2)
t Time, s
T Temperature, K
T0 Amplitude of the periodic imposed temperature, K
T∞ Ambient temperature, K
x x direction
r Spatial distance

Greek Symbols

α Thermal diffusivity (m2 · s−1)
αR Thermal diffusivity ratio α2/α1
η Dimensionless time, tα1

L2
1

ρ Density (kg · m−3)
θ1 Dimensionless temperature for case 1, T −T∞

T∞

θ2 Dimensionless temperature for case 2, T
T∞

θ0 Dimensionless amplitude of the imposed temperature, T0
T∞

τT Dimensionless phase-lag in the temperature gradient, τT α1
L2

1

τq Dimensionless phase-lag in the heat flux, τqα1

L2
1

τ̄q Phase-lag in the heat flux vector, s
τ̄T Phase-lag in the temperature gradient, s

w Dimensionless periodic source frequency,
ω̄L2

1
α1

w Periodic source frequency, Hz
ξ Dimensionless transverse coordinate, x

L1

Subscripts

∞ Ambient conditions
1 First layer
2 Second layer
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